Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements.

Identifieur interne : 001C80 ( Main/Exploration ); précédent : 001C79; suivant : 001C81

Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements.

Auteurs : Feng Feng [République populaire de Chine] ; Fei Ding [République populaire de Chine] ; Melvin T. Tyree [Éthiopie]

Source :

RBID : pubmed:25786827

Descripteurs français

English descriptors

Abstract

Both drought and freezing-thawing of stems induce a loss of hydraulic conductivity (percentage loss of conductivity [PLC]) in woody plants. Drought-induced PLC is often accompanied by physical damage to pit membranes, causing a shift in vulnerability curves (cavitation fatigue). Hence, if cavitated stems are flushed to remove embolisms, the next vulnerability curve is different (shifted to lower tensions). The 84K poplar (Populus alba × Populus glandulosa) clone has small vessels that should be immune from frost-induced PLC, but results demonstrated that freezing-thawing in combination with tension synergistically increased PLC. Frost fatigue has already been defined, which is similar to cavitation fatigue but induced by freezing. Frost fatigue caused a transition from a single to a dual Weibull curve, but drought-fatigued stems had single Weibull curves shifted to lower tensions. Studying the combined impact of tension plus freezing on fatigue provided evidence that the mechanism of frost fatigue may be the extra water tension induced by freezing or thawing while spinning stems in a centrifuge rather than direct ice damage. A hypothesis is advanced that tension is enhanced as ice crystals grow or melt during the freeze or thaw event, respectively, causing a nearly identical fatigue event to that induced by drought.

DOI: 10.1104/pp.114.256271
PubMed: 25786827
PubMed Central: PMC4424019


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements.</title>
<author>
<name sortKey="Feng, Feng" sort="Feng, Feng" uniqKey="Feng F" first="Feng" last="Feng">Feng Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100</wicri:regionArea>
<wicri:noRegion>Shaanxi 712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ding, Fei" sort="Ding, Fei" uniqKey="Ding F" first="Fei" last="Ding">Fei Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100</wicri:regionArea>
<wicri:noRegion>Shaanxi 712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tyree, Melvin T" sort="Tyree, Melvin T" uniqKey="Tyree M" first="Melvin T" last="Tyree">Melvin T. Tyree</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China mel.tyree@cantab.net.</nlm:affiliation>
<country wicri:rule="url">Éthiopie</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100</wicri:regionArea>
<wicri:noRegion>Shaanxi 712100</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2015">2015</date>
<idno type="RBID">pubmed:25786827</idno>
<idno type="pmid">25786827</idno>
<idno type="doi">10.1104/pp.114.256271</idno>
<idno type="pmc">PMC4424019</idno>
<idno type="wicri:Area/Main/Corpus">001D76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">001D76</idno>
<idno type="wicri:Area/Main/Curation">001D76</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">001D76</idno>
<idno type="wicri:Area/Main/Exploration">001D76</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements.</title>
<author>
<name sortKey="Feng, Feng" sort="Feng, Feng" uniqKey="Feng F" first="Feng" last="Feng">Feng Feng</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100</wicri:regionArea>
<wicri:noRegion>Shaanxi 712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Ding, Fei" sort="Ding, Fei" uniqKey="Ding F" first="Fei" last="Ding">Fei Ding</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100</wicri:regionArea>
<wicri:noRegion>Shaanxi 712100</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Tyree, Melvin T" sort="Tyree, Melvin T" uniqKey="Tyree M" first="Melvin T" last="Tyree">Melvin T. Tyree</name>
<affiliation wicri:level="1">
<nlm:affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China mel.tyree@cantab.net.</nlm:affiliation>
<country wicri:rule="url">Éthiopie</country>
<wicri:regionArea>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100</wicri:regionArea>
<wicri:noRegion>Shaanxi 712100</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Plant physiology</title>
<idno type="eISSN">1532-2548</idno>
<imprint>
<date when="2015" type="published">2015</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Air (MeSH)</term>
<term>Calcium Chloride (pharmacology)</term>
<term>Freezing (MeSH)</term>
<term>Plant Stems (drug effects)</term>
<term>Plant Stems (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (physiology)</term>
<term>Potassium Chloride (pharmacology)</term>
<term>Temperature (MeSH)</term>
<term>Water (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Air (MeSH)</term>
<term>Chlorure de calcium (pharmacologie)</term>
<term>Chlorure de potassium (pharmacologie)</term>
<term>Congélation (MeSH)</term>
<term>Eau (MeSH)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (physiologie)</term>
<term>Température (MeSH)</term>
<term>Tiges de plante (effets des médicaments et des substances chimiques)</term>
<term>Tiges de plante (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Calcium Chloride</term>
<term>Potassium Chloride</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Chlorure de calcium</term>
<term>Chlorure de potassium</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Populus</term>
<term>Tiges de plante</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Plant Stems</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Air</term>
<term>Freezing</term>
<term>Temperature</term>
<term>Water</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Air</term>
<term>Congélation</term>
<term>Eau</term>
<term>Température</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Both drought and freezing-thawing of stems induce a loss of hydraulic conductivity (percentage loss of conductivity [PLC]) in woody plants. Drought-induced PLC is often accompanied by physical damage to pit membranes, causing a shift in vulnerability curves (cavitation fatigue). Hence, if cavitated stems are flushed to remove embolisms, the next vulnerability curve is different (shifted to lower tensions). The 84K poplar (Populus alba × Populus glandulosa) clone has small vessels that should be immune from frost-induced PLC, but results demonstrated that freezing-thawing in combination with tension synergistically increased PLC. Frost fatigue has already been defined, which is similar to cavitation fatigue but induced by freezing. Frost fatigue caused a transition from a single to a dual Weibull curve, but drought-fatigued stems had single Weibull curves shifted to lower tensions. Studying the combined impact of tension plus freezing on fatigue provided evidence that the mechanism of frost fatigue may be the extra water tension induced by freezing or thawing while spinning stems in a centrifuge rather than direct ice damage. A hypothesis is advanced that tension is enhanced as ice crystals grow or melt during the freeze or thaw event, respectively, causing a nearly identical fatigue event to that induced by drought.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">25786827</PMID>
<DateCompleted>
<Year>2016</Year>
<Month>04</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1532-2548</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>168</Volume>
<Issue>1</Issue>
<PubDate>
<Year>2015</Year>
<Month>May</Month>
</PubDate>
</JournalIssue>
<Title>Plant physiology</Title>
<ISOAbbreviation>Plant Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements.</ArticleTitle>
<Pagination>
<MedlinePgn>144-55</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1104/pp.114.256271</ELocationID>
<Abstract>
<AbstractText>Both drought and freezing-thawing of stems induce a loss of hydraulic conductivity (percentage loss of conductivity [PLC]) in woody plants. Drought-induced PLC is often accompanied by physical damage to pit membranes, causing a shift in vulnerability curves (cavitation fatigue). Hence, if cavitated stems are flushed to remove embolisms, the next vulnerability curve is different (shifted to lower tensions). The 84K poplar (Populus alba × Populus glandulosa) clone has small vessels that should be immune from frost-induced PLC, but results demonstrated that freezing-thawing in combination with tension synergistically increased PLC. Frost fatigue has already been defined, which is similar to cavitation fatigue but induced by freezing. Frost fatigue caused a transition from a single to a dual Weibull curve, but drought-fatigued stems had single Weibull curves shifted to lower tensions. Studying the combined impact of tension plus freezing on fatigue provided evidence that the mechanism of frost fatigue may be the extra water tension induced by freezing or thawing while spinning stems in a centrifuge rather than direct ice damage. A hypothesis is advanced that tension is enhanced as ice crystals grow or melt during the freeze or thaw event, respectively, causing a nearly identical fatigue event to that induced by drought.</AbstractText>
<CopyrightInformation>© 2015 American Society of Plant Biologists. All Rights Reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Feng</LastName>
<ForeName>Feng</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Ding</LastName>
<ForeName>Fei</ForeName>
<Initials>F</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Tyree</LastName>
<ForeName>Melvin T</ForeName>
<Initials>MT</Initials>
<AffiliationInfo>
<Affiliation>College of Forestry, Northwest A&F University, Yangling, Shaanxi 712100, China mel.tyree@cantab.net.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2015</Year>
<Month>03</Month>
<Day>18</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Plant Physiol</MedlineTA>
<NlmUniqueID>0401224</NlmUniqueID>
<ISSNLinking>0032-0889</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>059QF0KO0R</RegistryNumber>
<NameOfSubstance UI="D014867">Water</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>660YQ98I10</RegistryNumber>
<NameOfSubstance UI="D011189">Potassium Chloride</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>M4I0D6VV5M</RegistryNumber>
<NameOfSubstance UI="D002122">Calcium Chloride</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000388" MajorTopicYN="N">Air</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002122" MajorTopicYN="N">Calcium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005615" MajorTopicYN="Y">Freezing</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018547" MajorTopicYN="N">Plant Stems</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011189" MajorTopicYN="N">Potassium Chloride</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014867" MajorTopicYN="N">Water</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2014</Year>
<Month>12</Month>
<Day>23</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2015</Year>
<Month>03</Month>
<Day>17</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2015</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2015</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2016</Year>
<Month>4</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">25786827</ArticleId>
<ArticleId IdType="pii">pp.114.256271</ArticleId>
<ArticleId IdType="doi">10.1104/pp.114.256271</ArticleId>
<ArticleId IdType="pmc">PMC4424019</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oecologia. 2013 Nov;173(3):665-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23624704</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2003 Jul;217(3):436-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14520570</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2012 Feb;193(3):713-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22150784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Oct;100(2):605-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16653035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2001 Feb;125(2):779-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11161035</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2008 Aug;28(8):1145-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18519246</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Jul;33(7):1059-69</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20199629</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2002 Dec;22(17):1211-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12464574</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1992 Sep;100(1):205-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16652947</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Dec;37(12):2667-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24588635</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Am J Bot. 1999 Oct;86(10):1367-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10523278</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 May;37(5):1074-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24117494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 1997 Jul;9(7):1031-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9254929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1983 Oct;73(2):277-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16663208</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1988 Nov;88(3):581-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16666352</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(11):2743-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16820396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Tree Physiol. 2003 Jun;23(9):615-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12750054</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 1987 Jun;84(2):495-500</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16665468</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2014 Jan;37(1):35-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23600520</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2015 Jul;38(7):1233-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25444560</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2001 Nov;52(364):2135-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11604452</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2002 May;53(371):1155-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11971926</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2006 Jan;140(1):374-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377751</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
<li>Éthiopie</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Feng, Feng" sort="Feng, Feng" uniqKey="Feng F" first="Feng" last="Feng">Feng Feng</name>
</noRegion>
<name sortKey="Ding, Fei" sort="Ding, Fei" uniqKey="Ding F" first="Fei" last="Ding">Fei Ding</name>
</country>
<country name="Éthiopie">
<noRegion>
<name sortKey="Tyree, Melvin T" sort="Tyree, Melvin T" uniqKey="Tyree M" first="Melvin T" last="Tyree">Melvin T. Tyree</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001C80 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 001C80 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:25786827
   |texte=   Investigations concerning cavitation and frost fatigue in clonal 84K poplar using high-resolution cavitron measurements.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:25786827" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020